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Abstract

The quadrature method of moments (QMOM), a promising new tool for aerosol

dynamics simulation, is extended to multicomponent, internally-mixed particle

populations.  A new moment closure method, the Jacobian matrix transformation (JMT),

is introduced and shown to provide an efficient procedure for evolving quadrature

abscissas and weights directly and in closed form. For special growth laws where analytic

results are available for comparison, the QMOM is also found to be exact.  The JMT

implementation of the QMOM is used to explore the asymptotic behavior of coagulating

aerosols at long time.  Nondimensional reduced moments are constructed, and found to

evolve to constant values in excellent agreement with estimates derived from ‘self-

preserving’ distributions previously obtained by independent methods.  Our findings

support the QMOM as a new tool for rapid, accurate simulation of the dynamics of an

evolving internally-mixed aerosol population, including the approach to asymptotic

behavior at long time, in terms of lower-order moments.
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1. Introduction

The accurate and efficient representation of aerosol microphysical processes is a

growing requirement in such diverse modeling applications as combustion, nano-particle

synthesis, and assessment of radiative and chemical effects of natural and anthropogenic

atmospheric aerosols and their impact on climate.  Most aerosol models explicitly represent

the particle size distribution using either discrete bins (the sectional approach) or assumed

functional forms for various modes of the distribution (the modal approach).  These are

standard modeling schemes well-investigated in the literature.  More recently there have

been advances in representing aerosols by the moments of the size distribution rather than

the distribution itself.  This approach, the method of moments (MOM), offers significant

advantages for incorporating aerosol processes in large-scale models, provided closed sets

of dynamical equations for evolution of the moments can be obtained (Friedlander, 1983;

McGraw and Saunders, 1984; Pratsinis, 1988; McGraw, 1997).  These include

comparatively straightforward implementation of the method as the moments evolve

according to (closed) sets of differential equations having the structure of typical rate

equations governing the evolution of reacting chemical species in the same background

flow.  Additionally, simulations of aerosol dynamics based on moments are free from

uncertainties associated with numerical diffusion (in particle size space) and tend to have

greatly superior computational speed when compared with the sectional approach

(Frenklach and Harris, 1987).

Closure of the moment evolution equations has always been the key issue.  The

conditions necessary for exact closure are encountered only in highly specialized cases such

as free-molecular growth (Hulburt and Katz, 1964).  However with the recent introduction

of the quadrature method of moments (QMOM) (McGraw, 1997; Barrett and Webb, 1998),

condensation and coagulation kernels of arbitrary form can be treated without the need for a

priori  assumptions about the size distribution. Thus the QMOM has become a viable

candidate for modeling aerosols under very general conditions.  The first paper (McGraw,

1997) introduced the quadrature-based closure technique and its application to arbitrary rate
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laws for evaporation and condensation growth.  In essence, the QMOM replaces exact

closure with an approximate, but much less restrictive closure condition, while enabling

evaluation of physical and optical properties as integrals over a particle distribution function

when only the lower-order moments of the distribution are known.  The method has been

applied to coagulation and condensation (Barrett and Webb, 1998) and more recently - with

nucleation, condensation, and coagulation all included within the QMOM framework - to

the representation of aerosols in a sub-hemispheric scale atmospheric chemical transport

and transformation model (Wright et al. 2000).

The present paper continues development of the QMOM through its extension to

internally-mixed multicomponent aerosols undergoing growth by condensation and

coagulation. This complements our previous treatment of external mixtures by the QMOM

in which four different types of aerosol were simultaneously present (Wright et al., 2000).

A rigorous treatment of generally-mixed aerosol populations requires a multivariate

description (see Sec. 6) and is reserved for a future report.

2. Derivation of the coupled moment equations for an internal mixture

Consider a general aerosol coordinate x , which can represent particle radius, mass,

log radius, etc.  The growth law, defined in terms of x , is φ(x) ≡ dx / dt , which in general

will depend on condensable vapor species concentrations and temperature, as well as on x .

(With closure under arbitrary growth laws enabled by the QMOM, comes the freedom to

select the aerosol coordinate that is best for the problem at hand.  As explained further in the

following sections, this is a very positive feature of the quadrature closure method.)

Changes in the aerosol number density distribution function f (x) under condensation and

evaporation, which conserve particle number, follow the conservation equation:

∂f (x)
∂t

= − ∂(φf )
∂x

(2.1)

Units of f (x) are particles per unit volume between x  and x + dx .  The k th moment in x-

space is defined as:
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xk
f

xk f x dx≡
∞

∫
0

( ) (2.2)

where f  indicates averaging over the distribution f .  Its time evolution is

               
d

dt
xk

f
xk f

x
dx k xk x f x dx= − = −

∞ ∞

∫ ∫
0 0

1∂ φ
∂

φ( )
( ) ( ) . (2.3)

for k ≥ 1.  The first equality follows from Eqs. 2.1 and 2.2.  The last equality follows

integration by parts and the fact that f (x) vanishes at the limits of integration.  The

appearance of the total derivative reflects the fact that the integral over size space is a

function only of time.  For x  equal to the particle radius, Eq. 2.3 was derived previously by

a similar method (Hulburt and Katz, 1964) and utilized in development of the quadrature

method of moments for condensation growth (McGraw, 1997).  See the Appendix for a

more general result.

Total mass and component species mass distributions

For the remainder of this section let the aerosol coordinate be the total particle mass

( x = m ) and consider the aerosol total mass distribution q = mf .  Units of q(m) are total

aerosol mass per unit volume for those particles having mass between m  and  m + dm.

Following Pilinis (1990) and Meng et al. (1998) we define the mass distribution function of

species j  in the particulate phase:

qj (m,t) =
mj
m

q(m,t) (2.4)

where mj m( ) is the mass of species j  in an internally-mixed particle of total mass m .

To obtain evolution equations for the moments of q(m) and qj (m) we need the

analogous equations to Eq. 2.1 for these distributions.  An elegant procedure, based on the
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method of characteristics and transformation to the moving reference frame defined by the

characteristic curves dm / dt = φ(m), where φ(m) is the growth law, has been developed by

Pilinis (1990) that solves this problem.  Here we give only the final result, referring the

reader to Pilinis (1990) and Meng et al. (1998) for additional details of the derivation.  For

the total mass distribution the analog to Eq. 2.1 is:

∂q

∂t
= −m

∂(qφ / m)
∂m

= −m
∂(qH)

∂m
(2.5)

where the last equality introduces the relative growth law H(m) = m−1dm / dt .  For the

mass distribution of species j  the analogous equation is:

∂
∂t

q j = −
∂(qjmH)

∂m
+ q

m

dmj
dt

= −
∂(qjmH)

∂m
+ qHj (m) (2.6)

where the second equality with Hj (m) ≡ m−1dmj / dt  defines the growth law for the

relative rate of growth of component mj  in a particle of total mass m .  Equation 2.6 is the

condensation part of the aerosol general dynamic equation describing evolution of the mass

distribution of species j  in an internal mixture (Meng et al., 1998).

Evolution of the moments

The mass moments over q are:

mk
q

≡ mk

0

∞

∫ q(m)dm (2.8)

From this result and q = mf  we have the identity:

mk
q

= mk + 1
f
. (2.9)
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Thus the zeroth moment over the q -distribution gives the total aerosol mass density.  From

Eqs. 2.5 and 2.8 and after an integration by parts we obtain:

d

dt
mk

q
= (k + 1) mk

0

∞

∫ H(m)q(m)dm . (2.10)

for k ≥ 0.  We define the mass moments over qj  as:

mk
qj

≡ mk

0

∞

∫ qj (m)dm . (2.11)

Differentiation of Eq. 2.11, using Eq. 2.6 and integrating the first term by parts, gives

d

dt
mk

qj

= k mk

0

∞

∫ qj (m)H(m)dm + mk

0

∞

∫ q(m)Hj (m)dm

(2.12)

for k ≥ 0.  (See the Appendix for an alternate derivation of this result.)  Equations 2.12

(including one set of moments for each aerosol component j ) are the fundamental coupled

moment equations of the condensation model.  Equation 2.10 for evolution of the aerosol

total mass distribution moments is recovered from Eqs. 2.12 by summing over all aerosol

components j  (using q = qj∑  and H = Hj∑ ).  Species mass distributions are seen

from Eqs. 2.12 to be coupled with each other through the total mass distribution.  Equations

2.12 cannot be solved in their present form because of the integrations over the unknown

distribution functions q(m) and qj (m).  Except for very special cases of the growth law,

closure of these equations is not possible.  Specifically, closure of Eq. 2.12 by the

conventional method of moments (e.g. Hulburt and Katz, 1964) would require that each of

the growth laws, H(m) and Hj (m) , be in the form a + b / m  where a  and b  are constants.

Analytic solutions for q(m,t), considered by Pilinis (1990) for the growth law H(m) = a ,
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are brieftly discussed in Sec. 5.  In the following section we outline the closure of Eqs. 2.12

by the quadrature method of moments and introduce a new computational approach (the

Jacobian matrix transformation) for their solution.

3. Closure by the quadrature method of moments (QMOM)

A general procedure for closure of moment evolution equations is given by the

quadrature method of moments  (McGraw, 1997).  Indeed all dynamical processes that

involve integrations over the unknown aerosol distribution can be handled by this approach.

Specifically, the QMOM provides a recipe for closure under coagulation (Barrett and

Webb, 1998) as well as for condensation/evaporation growth.

The essence of quadrature based closure of Eqs. 2.10 or 2.12 lies in approximating

the growth law integrals by n -point Gaussian quadratures with the non-standard weight

function q  or qj .  Application of quadrature to Eq. 2.10 gives:

  
d

dt
mk

q
≅ (k + 1) mi

kH(mi )
i=1

n

∑ wi (3.1a)

for k ≥ 0. The approximate equality in Eq. 3.1a refers to use of the quadrature

approximation.   The right hand side derives from Eq. 2.10 by treating the unknown

distribution q m( ) as the weight function, and the known function, m H mk ( ), as the kernel.

Thus for q e m= −  in Eq. 2.10, the rhs of Eq. 3.1a results in the standard n-point Laguerre

integration formula whose weights wi  and abscissas mi  are available in tabulated form

(Abramowitz and Stegun, 1972).  The structure of the rhs of Eq. 3.1a remains valid for non-

standard weight functions; only the abscissas and weights need to be determined (see

below).

A similar application of the quadrature approximation to each of the terms on the

right hand side of Eq. 2.12 gives:
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d

dt
mk

qj

≅ k mj,i
kH(mj,i )

i=1

n

∑ wj,i + mi
kHj (mi )

i=1

n

∑ wi (3.1b)

where the subscript i  labels the quadrature abscissas m  and weights w  (for i  from 1 to n )

and subscript j  labels the aerosol component.  These are generally different sets for each

distribution, which depend only on the lower-order moments of that distribution.  The

moments themselves are readily expressed in terms of the abscissas and weights.  For  n-

point quadrature:

mk
q

= mi
k

i=1

n

∑ wi (3.2a)

mk
qj

= mj,i
k

i=1

n

∑ wj,i (3.2b)

which are exact for k = 0  through 2n − 1.

Mathematical foundation for the QMOM lies in the fact that the abscissas and

weights appearing in the quadrature summations for moment evolution (Eqs. 3.1) can be

obtained even thought the weight functions q(m,t) and qj m t( , ) are themselves unknown.

All that is required is the availability of the lower-order moments of the weight functions

(Press and Teukolsky,  1990).  This remarkable feature underlies the synergy between

quadrature methods, which permit integration of an arbitrary (but known) kernel function

over an unknown aerosol distribution (the weight function), and moment methods, which

track the lower-order moments of the distribution.  Equations 3.2 show that the abscissas

and weights are determined by the lower-order moments and this fact leads to closure of

Eqs. 3.1.  Computing the moments in terms of the abscissas and weights using Eqs. 3.2 is

straightforward.  A more challenging problem is to invert the first 2n moments for k = 0

through 2n − 1 to obtain the unique set of n  abscissas and n  weights for which Eqs. 3.2

are satisfied.  One such algorithm is provided by McGraw (1997).  Presently we use the

compact and efficient subroutine ORTHOG from Numerical Recipes (Press et al., 1992) to
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do the inversion.  Six-moments, or three-point quadrature points, are often sufficient for

estimating aerosol physical and optical properties (McGraw, 1997; McGraw et al., 1995;

Yue et al., 1997; Wright, 2000).  Accordingly, in the examples given below, we will track six

moments, corresponding to three-point quadrature, for each distribution.  Tracking the

aerosol total mass distribution moments requires using only the six moments of the q -

distribution from Eq. 2.8.  Tracking the total mass and any one selected component will

require 12 moment equations.  Tracking all components of a six-component, internally-

mixed, aerosol would require 36 moment equations coupled in groupings of six through the

total mass distribution, etc.

Inspection of Eqs. 3.1 shows that the differential expressions for moment evolution

are given in terms of quadrature abscissas and weights.  Except in the special analytic cases

mentioned above, for which an exact closed set of equations for moment evolution results,

the most direct integration approach requires moment inversion to obtain quadrature

abscissas and weights from which moment differentials can be computed via Eqs. 3.1, using

these to update the moments, and so on.  Thus in this scheme multiple moment inversions

are required.  Nevertheless this remains a valid and often useful computational approach.

Here we will introduce a powerful new method, based on Jacobian matrix transformation

(JMT), for obtaining closure in the QMOM while preserving the rigorous correspondence

between the moments and the quadrature abscissas and weights.  The JMT closure has

significant advantages for describing continuous evolution of an aerosol population in time.

Specifically, the JMT eliminates the need for repeated moment inversions.  As most aerosol

dynamic processes, including condensation, chemistry, coagulation, and removal are

continuous, the method is quite general and not limited to the particular moment evolution

described by Eqs. 3.1.  An important exception to continuous aerosol dynamics is the

transport step in an Eulerian model, which necessarily involves transfer of  finite amounts of

all species, including moments, from cell to cell at each transport time step.  Another

example is primary emissions, which can introduce finite changes in aerosol moments over

a model time step.  At these junctures, which involve finite changes in the moments during a
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model run, a moment inversion step [for example using (McGraw, 1997) or ORTHOG] to

update the quadrature abscissas and weights is required.  Between such steps, during which

continuous evolution of the aerosol occurs, the JMT can be used.  Besides making closure

more explicit, the JMT is a powerful analytic tool that can often be used to simplify

propagation of the abscissas and weights.  These features are illustrated below.

Jacobian matrix transformation (JMT):

  The JMT enables a closed set of differential equations to be obtained solely in

terms of the abscissas and weights.  To illustrate the method, return to the general

coordinate notation of Eqs. 2.1-3 and consider a generic set of moments

  

r
µ = {µ0,µ1,...,µ2n − 1} and corresponding abscissas {xi} and weights {wi} represented

by the vector 
  

r
r = {x1,w1, x2,w2,..., xn,wn}.  The latter are connected with the moments

through Eqs. 3.2c:

µk x f x dx xi
kwi

k

i

n

≡ =∫ ∑
=

( )
1

(3.2c)

From Eqs. 3.2c we obtain the Jacobian matrix J  defined as:

J ≡

− − −































=

∂µ

∂

∂µ

∂

∂µ

∂

∂µ
∂

∂µ
∂

∂µ
∂

∂µ
∂

∂µ
∂

∂µ
∂

0

1

0

1

0

1

1

1

1

1

2 1

1

2 1

1

2 1

0 1 1
x w wn

x w wn

n
x

n
w

n
wn

w x x

         ...        

          ...        

                         :

  ... 

                  ...         

1      1        ...         nn
                      :

- ) 1
2n - 2

1  ...  n
2n -1(2 1n x w x





















   (3.3)

The elements of J , shown in the last array, are easily obtained from Eqs. 3.2c and involve

only the abscissas and weights.  Multiplication by the above matrix yields the differentials

for the moments in terms of differentials for the abscissas and weights:   d
r
µ = Jd

r
r .  This is

a linear system that is readily solved numerically for   d
r
r .
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Explicit solution for   d
r
r  requires the Jacobian matrix of the inverse transformation

J−1 whose derivatives are reciprocal to those of Eq. 3.3.  Multiplication of the vector of

moment differentials 
  
d

r
µ = {dµ0,dµ1,...,dµ2n − 1} by J−1 yields the vector of differentials

for the abscissas and weights 
  
d
r
r = {dx1,dw1,dx2,dw2,...,dxn,dwn}:

  d
r
r = J−1d

r
µ  .  (3.4)

Given that the elements of both factors on the right hand side of Eq. 3.4,   d
r
µ  from Eqs. 3.1

and J−1, involve only abscissas and weights, Eq. 3.4 is a closed set of differential equations

in these quantities.  Initial values for the abscissas and weights are obtained from the initial

moments on inversion.  To carry out this procedure in general, the quadrature

approximation, indicated by the approximate equality for   d
r
µ  in Eqs. 3.1a and 3.1b is

required.  However for those special cases that an exact closed-form set of equations can be

obtained for the moments it follows, because the moments are related to the abscissas and

weights through Eq. 3.2c, that Eq. 3.4 is also exact.  This is demonstrated for analytic test

cases in Sec. 5. Like the QMOM itself, the JMT provides a more general framework for

representing aerosol dynamics than does the conventional method of moments, reducing to

the latter whenever the latter is exact.

For analytic results, as in the derivation of Eqs. 3.5 below, explicit expressions for

the elements of J−1 may be needed.  These are significantly more complicated than those

of J  but are readily evaluated using a symbolic computation program such as Mathematica

(Wolfram, 1999).  These elements are universal for 3-point quadrature as they depend only

on the mathematical transformation between abscissas and weights and moments and not on

the functional form of   d
r
µ .  Thus the same matrices, J  and J−1, apply to any aerosol

process including, for example, the representation of multicomponent coagulating aerosols

(Sec. 4).  Note that if a pair of abscissas were to coincide, or a weight vanish, the matrix of
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Eq. 3.3 would be singular and J−1 would not be defined.  In practice this case doesn't arise,

but the issue can be forced by requiring that the distribution consist of only one or two delta

functions.  Even in these very unnatural cases, nonsingularity is easily restored by taking

into account the true lower dimensionality of J  and J−1. Closure equations for the q  and

qj  distributions are now given for 3-point quadrature.

Closure equations for the total aerosol mass distribution q(m):

Substitution of Eq. 3.1a into Eq. 3.4 and taking the time derivative of both sides

yields an especially simple result for evolution of the abscissas and weights under

condensation growth:

d

dt

m

w

m

w

mi wi

H m w H m w

m H m w m H m w

m H m w m H

1

1

3

3

1

1 1 3 3
2 1 1 1 2 3 3 3

5 1
4

1 1 5 3
4

 :

    

    

                               :

    























= −

+ +

+ +

+ +

J { ; }

( ) ... ( )

( ) ... ( )

( ) ... (mm w

m H m w m H m w

m H m

w H m

m H m

w H m
3 3

6 1
5

1 1 6 3
5

3 3

1 1

1 1

3 3

3 3

)

( ) ... ( )

( )

( )

( )

( )
    

      :

+ +



























=























           (3.5a)

where the elements of J−1 are the same as above, but here in terms of the abscissas and

weights {mi ;wi} of the q  distribution.  Although the middle expression is quite complicated

it reduces, aided by the algebraic capabilities of Mathematica, to the extremely simple result

shown on the right.  Equations 3.5a are the natural evolution equations for a decoupled set

of monodisperse distributions of particles of mass mi  and can be rewritten as:

dmi
dt

= miH(mi )

dwi
dt

= wiH(mi )

. (3.5b)

For continuous evolution of single-component aerosols under condensation and

evaporation, Eqs. 3.5b can be used directly and there is no need for moment inversion to



1 2

update the abscissas and weights.  It can be shown that the first of Eqs. 3.5b, giving rise to a

pure evolution of the abscissas (dmi / dt ), results from the leading term, proportional to k

on expansion of the right hand side of Eq. 3.1a.  The second of Eqs. 3.5b, giving rise to a

pure propagation of the weights (dwi / dt ), results from the remaining term proportional to

unity.

Closure equations for the aerosol component mass distribution qj (m):

Evolution of the abscissas and weights for the j -component distributions from Eqs.

3.1b and 3.2b is slightly more complicated.  One reason is that without knowledge of the q -

distribution at the quadrature points of the qj -distribution, and vice versa, it is generally not

possible to approximate both integrals in Eq. 2.12 using the same set of abscissas and still

have exact representation of the lower-order moments of each distribution.  For this we

must utilize all 2n quadrature points (n  for the component j  distribution and n  for the

total mass distribution) that appear on the right hand side of Eqs. 3.1b.  Nevertheless,

evolution of the abscissas and weights of the qj -distribution can still be carried out

rigorously by the Jacobian matrix transformation method.  (Of course if the composition

mj / m  in Eq. 2.11 is independent of m , the distributions are proportional and the problem

simplifies considerably.  Here we will examine the more general case.)

We begin by splitting the moment time derivative into two parts according to

  
d

r
µ / dt = d1

r
µ / dt + d2

r
µ / dt  where 

  
d1

r
µ / dt  and 

  
d2

r
µ / dt  are, respectively, the first and

second terms on the right hand side of Eq. 3.1b.  These give rise to the corresponding

increments 
  
d1

r
r / dt  and 

  
d2

r
r / dt  in the abscissas and weights.  The first term, which

contains abscissas and weights from only the qj -distribution is most easy to evaluate and

reduces to a simple evolution of the abscissas with no change in the weights:
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d

dt

mj

wj

mj

wj

mj

wj

mj i wj i

d

dt

mj H mj

mj H mj

mj H mj
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1

1

2

2
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3

1 1

1 1

0

2 2
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3 3

0

,

,

,

,

,

,

{ , ; , }

, ( , )
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, ( , )
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
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









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
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
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




= − =





J
r
µ
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
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


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

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

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. (3.6a)

The elements of J−1 have the same functional form as previously, but are now in terms of

the abscissas mj,i  and weights wj,i of the qj  distribution.  The contribution from the

  
d r dt2

r
/  involves abscissas and weights from both the q  and qj  distributions and is a more

complicated expression:

d

dt

mj

wj

mj

wj

mj

wj

mj i wj i

H j m w Hj m w

m Hj m w m Hj m w
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(3.6b)

Although we have not found a simpler result for the right hand side of Eq. 3.6b, the latter is

readily evaluated given J−1.  The vector on the right hand side of Eq. 3.6b contains the

abscissas and weights of the q  distribution and the matrix-vector product, therefore,

contains contributions from both distributions as expected.  The total differential change for

the abscissas and weights of the component distribution is obtained by summing Eqs. 3.6a

and 3.6b. The result, together with the equation for evolving the abscissas and weights of the

q  distribution (Eq. 3.5), constitute a closed set of 12 equations for evolution of the

abscissas and weights of both (total mass and component j ) distributions.  Sets of
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equations identical to Eqs. 3.6 are encountered for each of the aerosol component

distributions.  Although more complicated than using a single set of abscissas, this

procedure insures optimal  representation of the moments for each distribution.

4. Coagulation by the QMOM

Coagulation rates are frequently expressed in terms of particle volume, however in

this section we will continue the notation of Secs. 2 and 3 and express distributions in terms

of particle mass.  Conversion to volume or radial moments is straightforward for spherical

particles of known density.  Evolution of the k th moment under coagulation can be written

as (Barrett and Webb, 1998):

d
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m du dv u v u v K u v f u t f v t
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k

f coag

k k k

j

n

i

n

f i f j

k

f i
k

f j
k

f i f j











∞∞ 









==











= + − −

≅ + − −

∫∫

∑∑

1
2

1
2

00

11

( ) ( , ) ( , ) ( , )

( ) ( , )
, , , , , , ww wf i f j, ,

  (4.1)

where the coordinates u and v refer to particle mass and the subscript f  labels the abscissas

and weights of the f -distribution.  The integrand in Eq. 4.1 derives form considering the

coagulation of a pair of particles of masses u and v to form a particle of total mass u+v and

the effect that each such event has on the moment.  K u v( , )  is the collision frequency

function, which depends on the volumes of the colliding particles and on such properties of

the system as temperature, pressure, and viscosity.  The factor of 1/2 corrects for double

counting.  The last equality gives the approximate moment evolution in the QMOM.  As

with condensation, closure is obtained from the connection between moments and

quadrature abscissas and weights.

This result will now be extended to the case of coagulation for an internally-mixed

multicomponent aerosol to obtain the moment evolution for the q(m) and qj (m)

distributions.  A similar result to Eq. 4.1 is readily obtained for evolution of the moments of

the aerosol total mass distribution, q(m).  From Eqs. 2.9 and 4.1 we obtain:
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where the double summations are over the abscissas and weights for the q(m) distribution.

The evolution of qj (m) due to coagulation is given by Pilinis (1990):

         

∂
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The first term on the right hand side describes the production of particles of mass m through

coagulation of particles of masses ′m  and m m− ′ , and the second term describes the loss of

particles of mass m as these coagulate with particles of mass ′m .  Using this result to

differentiate the integrand of Eq. 2.11 and carrying out the integration, we obtain the following

rate of change for the kth moment:
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where i  and l  are summation indices and j , as in Eqs. 3.2, labels the aerosol component.

In the first integral u m= ′  and v m m= − ′ ; in the second u m= ′  and v m= .  The last

equality follows from the permutation symmetry K(u,v) = K(v,u).  As in Eq. 3.1b, the

abscissas and weights for both distributions, q(m) and qj (m), appear on the right hand side
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of Eq. 4.2b.  Summation of the equalities of Eq. 4.2b for different species index j  gives Eq.

4.2a.

Equations 4.2 complete the QMOM formulation for moment evolution under

coagulation of internal mixtures described by the q(m) and qj (m) distributions.  Together

with Eqs. 3.2 for the moments, a closed set of equations for the lower-order moments is

obtained as in the case of condensation.  Closure equations, which do not require multiple

moment inversions to update the abscissas and weights, can be also be obtained for

coagulation using the Jacobian matrix transformation of Sec. 3.  In the notation of Eq. 3.4,

with subscript labels added to indicate the distribution, we obtain
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where the k th elements of the moment vector derivatives are given by Eqs. 4.2.  ( Note the

abbreviated notation whereby the kth component of   
r
µq  equals mk

q
, etc. )  The J−1

matrices of Eqs. 4.3a and 4.3b are identical to those of Eq. 3.5a and Eq. 3.6, respectively.  A

similar equation to Eq. 4.3a results for evolution of the abscissas and weights and moments

of the f  distribution.  In this case J−1 has the same functional form as above, but its

arguments are given in terms of the abscissas and weights of the number distribution.

Equations 4.3 describe continuous evolution of abscissas and weights under coagulation in

much the same way that Eqs. 3.5 and 3.6 do under condensation.  The differentials from

Eqs. 3.5a and 4.3a for q(m) [from Eqs. 3.6 and 4.3b for q mj ( )] contribute additively to the

aerosol general dynamic equation describing continuous evolution under simultaneous

condensation and coagulation.  These results are illustrated in the calculations below.
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5. Calculations

Analytic solutions for q(m,t) under conditions of constant coagulation kernel and

constant growth rates are given by Pilinis (1990).  These conditions, with coagulation and

condensation occurring separately or together, result in closed-form equations for moment

evolution and both the MOM and the QMOM are exact.  In addition to evolution under a

constant kernel, the sum and product coagulation kernels, K(u,v) = u + v and K(u,v) = uv ,

are also handled exactly by moment methods for the positive integral moments (Barrett and

Webb, 1998).  To benchmark the QMOM for a non-analytic case, we use the coagulation

kernel for Brownian coagulation in the continuum (large particle) regime (Friedlander and

Wang, 1966):

K(u,v) = KBL(u1 / 3 + v1 / 3)(u−1 / 3 + v−1 / 3) (5.1)

where u  and v are particle volumes.  The prefactor KBL  depends on temperature and

viscosity and will be assumed constant in the calculations to follow.

For growth by condensation, a widely used interpolation formula, which provides a

non-analytic test case for the model (Barrett and Clement, 1988; McGraw et al., 1998) is:

H m A
m

aM m
( )

/

/=
−

+

1 3

1 3 . (5.2)

The prefactor, A , is proportional to the difference in number density of condensable

molecules in the vapor at large distance from the particle and the number density at the

particle surface.  This difference is positive for condensation and negative for evaporation.

The parameter aM  is dependent on the mass accommodation coefficient and mean free

path.  Without loss of generality we can express mass in units of aM
3, and time in units of

aM
2 / A, to obtain:
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H̃(m̃) = m̃−1 / 3

1 + m̃1 / 3 (5.3)

where the tilde indicates reduced units ( ˜ / ; ˜ / )m m aM t At aMcond= =3 2 .  For coagulation it

is conventional to express results in terms of the reduce time t̃ KBLN tcoag = 0  where N0  is

the initial particle number density, and reduced particle number N N/ 0 .

For the general case that both condensation and coagulation are occurring, because

only one reduced time scale can be chosen, we express time in terms of t̃cond  using the time

constant ratio χ = aM KBLN A2
0 /  to determine the relative rates of the two processes.

Thus for χ << 1 condensation occurs more quickly than coagulation, and vice versa.  In the

simultaneous process calculations below we choose χ = 1.

Benchmark box-model calculations:  Discrete scheme for solving the aerosol general

dynamic equation

To evaluate the QMOM for multicomponent aerosols we computed benchmark

results using a discrete representation of the particle size distribution.  The discrete scheme

employed here numerically integrates the appropriate terms of the aerosol general dynamic

equation for growth by coagulation and condensation using a fixed logarithmic mass scale.

The scheme is optimized for ease of programming and is not designed to minimize the

number of grid points or computation speed.  In practice the number of grid points is

increased until convergence is obtained.  As evolution processes give rise to particle masses

that do not correspond to any of the fixed grid values, these are apportioned over the

neighboring grid points.

As an illustration suppose that there are N  coagulation events between particles of

masses mi  and mj  (grid points i  and j ) during an integration time step.  This would yield

N  particles of mass mk = mi + mj , with mnlo ≤ mk < mnhi  where mnlo  and mnhi  are the

masses of the two neighboring grid points nlo and nhi, respectively.  The mass contained
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in the N  particles of mass mk  is apportioned between grid points nlo and nhi such that the

number of new particles N  and the total mass Nmk  are both conserved during the

apportionment.  This is done by solving the pair of equations N = Nnlo + Nnhi  and

Nmk = Nnlomnlo + Nnhimnhi  for Nnlo  and Nnhi , the increments added to the numbers

of particles at grid points nlo and nhi, respectively.  For an initial distribution with size-

independent composition, coagulation alone does not change particle composition and the

moments of each component are simply related to the moments of the total mass

distribution.  For the general case where particle composition is size-dependent, the mass

per particle for each component must be updated by considering at each coagulation event

the mass of each component acquired by the relevant grid points, as well as the changes in

particle number for those points.  Comparison with the finite-element method (FEM) results

of Barrett and Webb (1998) shows good agreement taking into account the degree of

convergence of the FEM results suggested by their tabulated values.

During condensation, each of the Ni  particles of mass mi  acquires mass dmi

during the time step with mi ≤ mi + dmi < mi + 1.  The time step is kept small enough to

insure that the latter inequality is satisfied.  As in the treatment of coagulation described

above, the total mass contained in the Ni   particles of mass mi + dmi  is apportioned

between neighboring grid points i  and i + 1 such that total mass and number are conserved.

The composition of each grid point is updated by computing the mass of each component

that condenses on a particle of total mass mi  during a time step for each of the grid points.

For growth by simultaneous coagulation and condensation, operator splitting is used.  The

mass range of the grid is extended far enough to insure that the distribution amplitude is

negligible at the high-mass end of the spectrum.

Variable transformation in the QMOM

For developing the evolution equations for the abscissas and weights in Secs. 3 and

4 it was convenient to work in terms of the first six positive integral mass moments q(m):
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mk  for k = 0  through 5.  In the calculations presented below we use the fractional

moments (mk / 3  for k = 0  through 5).  For an aerosol of uniform particle density these

mass-fractional moments are proportional to the radial moments.  This choice is motivated

by the fact that the members of this fractional moment sequence are of greater physical

relevance than higher-order members of the corresponding integral moment sequence

(Tandon and Rosner, 1999).  Furthermore, attempts to accurately represent the higher

integral moments, for example the fifth mass moment of q(m), magnify the importance of

the tail of the distribution, which is heavily weighted, and greatly increases the difficulty of

carrying out numerical calculations with sufficient accuracy and resolution to provide a

good benchmark test for the QMOM.

A very useful feature of the QMOM is that coordinate transformations can be

implemented simply by modifying the initial abscissas and weights and then evolving these

in time using the same transformations (e.g. the same Jacobian and the same   d
r
µ ) as used in

evolution of the integral moments.  This is seen for the fractional k / 3 mass moments as

follows.  Let the JMT evolution of the abscissas and weights, as determined initially from

the t = 0  integral moments, be represented schematically as follows:

  mi wi mi t wi t

JMT

( ), ( ) ( ), ( )0 0{ } → { } (5.4)

Next consider transformation to fractional k / 3 mass moments and let η = m1 / 3.  The

fractional mass moments are:

mk
q

mk q m dm q d i
kwi

k

i

n
/ / ( ) ( )3 3

0 0 1

≡ = ≅
∞ ∞

=
∫ ∫ ∑η η η ηη (5.5)

where the middle equality uses the transformation rule, q d q m dmη η η( ) ( )= , underlying the

mapping between coordinate systems.  The fractional moment sequence mk / 3  at t = 0

(e.g. for k = 0  through 5), when processed through ORTHOG, yields the corresponding
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initial set of abscissas and weights {ηi (0),wi (0)}.  One can now evolve {ηi ,wi} using the

same JMT as previously used to evolve the integral moments.  This requires first cubing the

abscissas to obtain units of mass and then evolving the cubed abscissas and weights as in

Eq. 5.4:

  η ηi wi i t wi t

JMT

3 0 0 3( ), ( ) ( ), ( ){ } → { } . (5.6)

The fractional mass moments at time t  are obtained from the right hand side of Eq. 5.6:

 mk
q i

k wi
i

n
/ ( ) /3 3 3

1

≅
=
∑ η (5.7)

Other variable transformations are readily accommodated by this approach using similar

transformations for the abscissas and weights.

Comparison between the benchmark model calculations and the QMOM

The initial number distribution is taken to be log-normal in the calculations that

follow:

f (m,0) = N0 ms 2π( )−1
exp{−[ln(m / m )]2 / (2s2)}. (5.8)

N0  is the particle number density, m  is particle mass, m  is the geometric mean mass, and

s  is the logarithm of the geometric standard deviation.  [The m  in Eq. 5.8 is the mass in

reduced units, ̃m , (c.f. Eq. 5.3) however to avoid a separate notation we simply set aM = 1

and m m= ˜ .]  The initial mass moments of q m mf m( , ) ( , )0 0=  are:

µk k m k s( ) exp{( ) [( ) ] / }0 1 1 2 2= + + + (5.9)

after normalization by the initial particle number, N0.  In the calculations that follow we set

s2 = Log(4 / 3), and m = 3 / 2 .  For the species distributions we set

qj (m,0) = q(m,0) / 3 for j = a,b,c and for the individual species growth laws,
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H̃a(m) = 0,  H̃b(m) = H̃(m) / 3, and H̃c(m) = 2H̃(m) / 3.  The tilde signifies reduced time

units.  Finally we assume unit densities and report results in terms of particle volume, v.

Figure 1, shows convergence of the benchmark model calculations for the full

distribution function and for the largest fractional  moment (µ5 3/ ) under continuum

Brownian coagulation alone.  The lower panel gives percent error, as compared with the

QMOM, vs reduced time [% ( ) /e QMOM Grid Grid= −100 ] where  'QMOM' and 'Grid'

are the moments from the QMOM and numerical calculations respectively.  We note that

the errors always decrease as the number of grid points increases.  Because the QMOM

result is fixed, this is a measure of the convergence of the discrete grid results.  These

results show that high grid resolution is necessary for accurate benchmarking of the

moment calculations (especially for the higher-order moments).  This is a reflection of the

high accuracy of the QMOM, which requires even higher accuracy of any benchmark

calculation.  The distribution function itself appears well converged using just 100 grid

points, while the error in the highest moment, µ5 3/ , which differs most from the converged

result, is about 1%.  Note the logarithmic scale, used in the upper panel, shows significant

evolution of f (v) form the initial distribution to the distribution at reduced time t̃ = 10 ,

suggesting a reasonable test case for the QMOM.  Coordinates have been chosen so as to

preserve area under the conservation of total particle volume that takes place during

coagulation alone.

Figure 2 shows moment evolution under simultaneous condensation and

coagulation (for χ = 1) from the discrete representation (3000 grid points) and from the

QMOM (dots).  The QMOM results were obtained without operator splitting (dots) and

show much larger departure from the discrete calculations than was found for either of the

processes, coagulation and condensation, separately.  This discrepancy is attributed to

degradation by operator splitting of the accuracy of the discrete calculations.  To access the

influence of operator splitting, calculations were carried out for q(v) by modifying the

QMOM so as to use the same operator splitting method as in the discrete case.  The results
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(open diamonds) never exceed a percent error difference of 0.5% from the discrete

benchmark calculations.  Thus the original QMOM results without operator splitting are

probably accurate to within the 0.5% error range expected from our analysis of the

coagulation and condensation processes separately.

In addition to benchmarking against computationally intensive simulations using

high-resolution grids, there are several analytic cases and cases of known asymptotic

behavior that provide additional tests on the accuracy of the QMOM.

Analytic and asymptotic results by the QMOM

For the analytic test cases considered by Pilinis either H(m) = 1 or K(u,v) = 1, or

both (Pilinis, 1990).  Under these conditions, moment methods, including the QMOM, are

exact for the positive integral mass moments.  This property follows from the fact that these

simplified growth laws yield closed sets of equations for the integral moments (see previous

discussion and Barrett and Webb, 1998).  Analytic cases for which the full distributions are

known exactly as a function of time provide a good benchmark for the accuracy of the

QMOM integration methods described in Sec. 3.  Table 1 shows results for evolution of the

fractional 1 / 3 moments under simultaneous condensation and coagulation (for H(m) = 1

and K(u,v) = 1 ) and comparison with analytic moments obtained from the full distribution

(since the latter is known analytically, all moments including the integral and the fractional

1 / 3 moments are also known).  Even with substantial evolution from the initial conditions,

excellent agreement is found for both the integral moments (µ0   and µ1) and the fractional

moments.  In the former case agreement is expected and these results demonstrate that

errors due to numerical integration are exceedingly small.  Excellent agreement for the

fractional moments is an indicator of the accuracy that can be expected from 3-point

quadrature integration even for problems for which the method is not exact.

The accuracy of the QMOM for long-time evolution under coagulation can be

benchmarked by comparison with asymptotic results (Friedlander and Wang, 1966).  The

asymptotic distribution is the similarity, or self-preserving, form that results for the
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continuous distribution function based on the property that the fraction of particles in a

given size range is a function only of the dimensionless volume η = v / v  where v  is the

average particle volume.  In terms of the volume moments of the number distribution, f (v),

v = µ1 / µ0 .  In general both the total particle volume V = µ1 and number density N∞ = µ0

are functions of time.  Here we consider the simplest case for which no material is added or

lost (constant V ) and the number density decreases as coagulation takes place.  In this

notation the relation:

f (v)dv

N∞

= ψ v

v




 d

v

v




 (5.10)

defines the reduced distribution function ψ (η) .  At long times, as ψ (η)  reaches its

asymptotic self-preserving form, the moments of ψ (η) :

ω k ≡ ηk

0

∞

∫ ψ (η)dη (5.11)

will also approach asymptotic values.  In terms of the moments of f (v), the reduced

moments are:

ω k = µk

µ0







µ0

µ1







k
. (5.12)

To compare our calculations with asymptotic results we evolve the moments, µk t( ),

of f v t( , )  out to long time using the QMOM.  From these are determine the

nondimensional moments, ω k t( ) of the reduced distribution  using Eq. 5.12.  Two different

coagulation kernels, the analytic constant kernel and the continuum Brownian kernel were

used to evolve the moments.  Convergence of the reduced moments to their asymptotic

values is shown in Fig. 6 for coagulation via the continuum Brownian kernel.  The

integration time was taken out to t = 105 although reliable convergence is obtained in

considerably less time (Fig. 6).  The logarithmic time scale is used to emphasize the

approach to asymptotic behavior.  Calculations were performed on a Sun Spark Enterprise
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and required only a few seconds of computer time using the Jacobian matrix

transformation.

Asymptotic values of the reduced moments (here taken to be the values at t = 105)

are given in Table 2.  For the constant kernel, the analytic distributions and thus the

moments are known exactly and the ω k  are known to approach the factorial values

ω k = Γ(k + 1) (Wang, 1966).  The QMOM results are seen to be in excellent agreement

with the analytic values as expected in the constant kernel case for which, apart from

numerical roundoff, the QMOM is exact.  The agreement for α , which is defined in terms

of the fractional 1 / 3 volume moments (see caption) is good only to about 5%, reflective of

the fact that the QMOM is not exact for fractional moments.  QMOM results for the

continuum Brownian kernel are also shown and seen to be in excellent agreement with

literature values for the integral volume moments and for α  (exact results are not available

for this case).

6. Summary and discussion

Moment methods, and in particular the QMOM, provide a highly accurate tool for

tracking the moments of a particle size distribution.  In this paper these methods have been

extended to internally-mixed particle populations and tested through simulations of particle

evolution through condensation and coagulation growth.  The percent errors, which were the

greatest for the highest order moment, never exceeded 0.05% for coagulation, 0.4% for

condensation, and an estimated 0.5% for the combined processes without operator splitting.

The accuracy for coagulation is especially remarkable and may be due to constraints on how

the moments evolve under the QMOM.  For example, unless two colliding particles are very

different in size, the Brownian kernel is nearly constant - and moment evolution for a

constant kernel by the QMOM is exact (Sec. 5).  Self-preserving constraints on the

distribution function may also serve to prevent unbounded accumulation of error as the

moments of a coagulating aerosol are evolved for long times using the QMOM.  The

QMOM was found to give exact results for the asymptotic moments in the constant kernel

case and excellent agreement with literature values for the asymptotic moments derived from
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self-preserving size distributions in the continuum Brownian case.  This paper also

introduced the Jacobian matrix transformation (JMT) and demonstrated its use as an

alternate closure method for the QMOM.

Previous applications of moment methods have generally been limited to univariate

distributions in which a single coordinate, usually particle radius or mass, is used to

represent particle size.  The internal mixture assumption employed in the present study also

results in a one-dimensional aerosol representation with total particle mass as coordinate.

However, with internal mixtures, multiple distributions, one for each component species,

need to be tracked and these are coupled through the total particle mass.  The methods

described in this paper provide a solution to the representation of internal mixtures in

aerosol models by moment methods.

The development of multicomponent thermodynamic models (e.g., Clegg et al.,

1998; Capaldo et al., 2000), has enabled improved prediction of aerosol evaporation rates

and gas-particle exchange.  The resulting growth laws have more general composition

dependence than those considered here, e.g., species growth rates of the multivariate form,

H m mj ( , ,...)1 2 , in the notation of Sec. 2.   The great efficiency of moment methods makes

these ideal candidates for extension to multivariate problems.  An important step in that

direction was recently taken through the development of a bivariate extension of the

QMOM for modeling simultaneous coagulation and sintering of nonspherical particle

populations (Wright et al., 2001).  Most recently, a fully multivariate version of the QMOM

has been developed using a dynamic extension of principal component analysis to provide

the mapping between mixed-moment elements of the multivariate covariance matrix and the

quadrature abcissas and weights.  Results from these studies will be reported in future work

(Yoon and McGraw, 2002).

Appendix:  A generalized derivation of Eqs. 2.3 using the Reynold's

transport theorem

Consider an integral over the particle number distribution function of the form:
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I h x f x t dV= ∫∫∫ ( ) ( , )

r r
(A1)

where   f x t( , )
r

 is the (here multivariate) distribution function, with   
r
x x x xk≡ ( , ,..., )1 2 , and

  h x( )
r

 is a kernel that depends that depends only on   
r
x .  Because   f x t( , )

r
 is conserved under

growth by condensation, and assuming that there are no sinks or sources of particles within

the integration volume, it satisfies the continuity equation:

  

df

dt
f v

f

t
fv+ ∇ ⋅ = + ∇ ⋅ =( ) ( )

r r∂
∂

0 (A2)

where   
r r r
v x dx dt= =φ( ) /  is a generalization of the univariate growth rate, φ( )x , of Sec. 2 to

the multivariate case. ∂ ∂/ t  denotes rate of change at constant   
r
x  and d dt/  is the rate of

change in the frame of the particle, analogous to the "material derivative" (Aris, 1962) used

in the case of fluid flow.

Under these conditions, we can adapt the methods described by Aris (1962) to

obtain the temporal evolution of A1:

  

dI

dt

d

dt
hfdV

d

dt
hf hf v dV

f
dh

dt
h

df

dt
f v dV f

dh

dt
dV

= = + ∇ ⋅


= + + ∇ ⋅













=

∫∫∫∫∫∫

∫∫∫ ∫∫∫

( ) ( )
r

r
                            

(A3)

where the second equality is the Reynold's transport theorem (Aris, 1962) and the fourth

equality follows from Eq. A2.   Note here that the volume of integration is assumed large

enough contain all of the particles independent of time.  Equation A3 is the more general

result mentioned in Sec. 2.  It reduces to Eq. 2.3 for the univariate case h x xk( ) = .

Equations 2.10 and 2.12 can also be derived from A3.  For example, for the moments of

Eqs. 2.12 we have, using the notation of Sec. 2:
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m m q m dm m m f m dmk

q

k
j

k
j

j

= =∫ ∫( ) ( ) (A4)

and from A3:

d

dt
m f m

d

dt
m m dmk

q

k
j

j

= ∫ ( ) ( ) . (A5)

Equation 2.12 follows immediately on taking the derivative that appears in integral on the right hand

side of A5.
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TABLE 1.  Evolution of fractional 1/3 moments for the analytic test case of
simultaneous condensation and coagulation with H(m)=1 and K(u,v)=1.

k µk (t = 0) µk (t = 10)QMOM µk (t = 10)exact

0
1/3
2/3
1
4/3
5/3

1
1.19064
1.50458
2
2.77816
4.0122

22026.5
1.34451E6
8.63004E7
5.82204E9
4.11311E11
3.027E13

22026.5
1.33585E6
8.59850E7
5.82198E9
4.11936E11
3.03031E13

TABLE 2.  Extension of the QMOM to the self-preserving limit.  Results for
constant and continuum-regime Brownian coagulation kernels.  The table gives
reduced moments ω k  from Eq. 5.12 and α ω ω ω ω= +− −1 3 1 3 1 3 1 31/ / / //( ) .  References are
(a) Wang (1966), (b) Friedlander and Wang (1966).
k ωk QMOM( )

constant kernel

ωk exact( )

constant kernel
= +Γ( )k 1

ωk QMOM( )

Brownian  kernel
(continuum regime)

ωk literature values( ) 

Brownian  kernel
(continuum regime)

0
1
2
3
4
5

α

1
1
1.99999
5.99992
23.9995
119.997

0.52

1
1
2
6
24
120

0.547

1
1
2.01022
6.05027
24.3116
122.317

0.52

1(a)
1(a)
2.014(a)
6.100(a)
24.77(a)
125.9(a)

0.53(b)



Figure Captions

Figure 1.  Convergence of the total volume distribution q v vf v( ) ( )=  from the discrete

representation of the distribution.  Results are for evolution under continuum Brownian

coagulation alone.  Results from discrete representations employing 100, 200, 500, 1000,

2000, and 3000 grid points are shown.  The upper panel shows the convergence of the

initially normalized distribution itself, which is shown to be well represented even with 100

grid points.  The lower panel shows the percent error differences between the discrete

representation and the grid-independent QMOM result for the largest moment (µ5 3/ ).

Results are shown as a function of the number of grid points used in the discrete

representation.  Time is in reduced units, t̃coag , defined in the text.

Figure 2.  Moment evolution under simultaneous condensation and coagulation from the

discrete representation (3000 grid points) and from the QMOM (dots).  Results are shown

for the total volume distribution q v( )  (solid line), and the species distributions q va ( )

(bottom curve), q vb( ) (second curve from bottom), and q vc ( ) (third curve from bottom).

QMOM results with operator splitting are also shown for the total volume distribution q v( )

(diamonds) to access the influence of operator splitting used to obtain the benchmark

results from the discrete representation. Time is in reduced units, t̃coag , defined in the text.

 Figure 3.  Evolution of the dimensionless reduced moments ω k  for k = −2 5 for

continuum Brownian coagulation alone (the values of ω0  and ω1 are by definition unity).

Note the logarithmic time scale used to emphasize the approach to asymptotic behavior at

comparatively short times.
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